Products in Hopf-cyclic Cohomology

نویسندگان

  • ATABEY KAYGUN
  • J. F. Jardine
چکیده

We construct several pairings in Hopf-cyclic cohomology of (co)module (co)algebras with arbitrary coefficients. As a special case of one of these pairings, we recover the Connes-Moscovici characteristic map in Hopf-cyclic cohomology. We also prove that this particular pairing, along with a few others, would stay the same if we replace the derived category of (co)cyclic modules with the homotopy category of (special) towers of super complexes, or the derived category of mixed complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pairings in Hopf-cyclic cohomology of algebras and coalgebras with coefficients

This paper is concerned with the theory of cup-products in Hopf-type cyclic cohomology of algebras and coalgebras. Here we give detailed proofs of the statements, announced in our previous paper [21]. We show that the cyclic cohomology of a coalgebra can be obtained from a construction involving noncommutative Weil algebra. Then we use a generalization of Quillen and Crainic’s construction (see...

متن کامل

Bivariant Hopf Cyclic Cohomology

For module algebras and module coalgebras over an arbitrary bialgebra, we define two types of bivariant cyclic cohomology groups called bivariant Hopf cyclic cohomology and bivariant equivariant cyclic cohomology. These groups are defined through an extension of Connes’ cyclic category Λ. We show that, in the case of module coalgebras, bivariant Hopf cyclic cohomology specializes to Hopf cyclic...

متن کامل

Para-Hopf algebroids and their cyclic cohomology

We introduce the concept of para-Hopf algebroid and define their cyclic cohomology in the spirit of Connes-Moscovici cyclic cohomology for Hopf algebras. Para-Hopf algebroids are closely related to, but different from, Hopf algebroids. Their definition is motivated by attempting to define a cyclic cohomology theory for Hopf algebroids in general. We show that many of Hopf algebraic structures, ...

متن کامل

On the Cyclic Cohomology of Extended Hopf Algebras

We introduce the concept of extended Hopf algebras and define their cyclic cohomology in the spirit of Connes-Moscovici cyclic cohomology for Hopf algebras. Extended Hopf algebras are closely related to, but different from, Hopf algebroids. Their definition is motivated by attempting to define a cyclic cohomology theory for Hopf algebroids in general. We show that many of Hopf algebraic structu...

متن کامل

On Cohomology of Hopf Algebroids

Inspired by [3] we introduce the concept of extended Hopf algebra and consider their cyclic cohomology in the spirit of Connes-Moscovici [3, 4, 5]. Extended Hopf algebras are closely related, but different from, Hopf algebroids. Their definition is motivated by attempting to define cyclic cohomology of Hopf algebroids in general. Many of Hopf algebra like structures, including the Connes-Moscov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007